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On Quartic Thue Equations 
with Trivial Solutions 

By R. J. Stroeker 

Abstract. Let K be a quartic number field with negative absolute discriminant and let 
L = Q(Vdi) be its real quadratic subfield, with d -3 (mod 4). Moreover, assume K to 
be embedded in the reals. Further, let C > 1 generate the subgroup of units relative to 
L in the group of positive units of K. Under certain conditions, which can be explicitly 
checked, and for suitable linear forms X(u, v) and Y(u, v) with coefficients in Z[s/d], the 
diophantine equation 

NormK/Q (X(u, v) + Y(u, v)C2) = 1, 

which is a quaxtic Thue equation in the indeterminates u and v, has only trivial solutions, 
that is, solutions given by XY = 0. 

Information on a substantial number of equations of this type and their associated 
number fields is incorporated in a few tables. 

1. Introduction. A homogeneous polynomial in two indeterminates x and y is 
commonly known as a binary form. Given such a binary form f of degree at least 
three with rational integer coefficients, and a fixed rational integer k, the equation 

(1) f(x, y) = k 

is called a Thue equation. Thue equations are examples of polynomial diophantine 
equations, and the usual object of study is to gather information on the existence, 
the number and the actual values of integer solutions. If f e Z[x, y] is irreducible, 
then Eq. (1) is an example of a norm form equation. A justification for this name 
may be found in the representation of f as 

(2) f(x, y) = NormK/Q(x- , 

where ( is a root of the equation f(t, 1) = 0 and K is the number field generated 
by ( over the rationals Q. The field K is often referred to as a field associated with 
the Thue equation (1). 

In order to solve a given diophantine equation of polynomial type, it often proves 
sufficient to solve finitely many Thue equations which can be explicitly derived from 
the original diophantine equation. This technique has a long history (see [6]), and 
even today it is used extensively (see [5], [12], [15] and [17]). 

Thue equations have been solved in a variety of ways. Axel Thue showed in 1909 
(see [14]) that for irreducible f, Eq. (1) has at most a finite number of solutions 
in rational integers x and y. His proof is ineffective in the sense that it does not 
give any informaton on the size of the solutions or their number. His techniques 
are rooted in the theory of diophantine approximation. Later Gel'fond and others 
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refined and extended these approximation methods and in the sixties Alan Baker 
built upon the foundation laid by Gel'fond the impressive structure of his theory 
of linear forms in the logarithms of algebraic numbers. This so-called Gel'fond- 
Baker method provides a powerful tool to solve, at least in principle, Thue equations 
effectively by explicitly giving upper bounds for their solutions (see [1]). But mostly 
these bounds are so large as to be virtually useless for the purpose of actually finding 
all solutions. Only recently have techniques been developed to adapt the Gel'fond- 
Baker method to Thue equations so that in certain cases the upper bounds can be 
reduced to manageable proportions (see [2] and [16]). 

Another route was taken by Mordell, Nagell and others and has a distinct al- 
gebraic flavor. Considering (1) as a norm form equation associated with an ap- 
propriate number field K, divisibility techniques and congruence considerations, 
followed, if necessary, by Skolem's p-adic method, often result in a complete solu- 
tion (see [13]). However, a drawback of this method is that in order to solve each 
individual Thue equation, a great many hard calculations need to be performed. 
This is true for both analytic and algebraic methods of solution. Only when deal- 
ing with a Thue equation which happens to have no solutions at all, this lack of 
solutions can usually be established in a rather trivial manner. 

In this paper a substantial class of Thue equations is considered, equations which 
do admit solutions but only the obvious ones. These equations are associated with 
quartic fields K of negative absolute discriminant. To be more precise, we consider 
certain equations of type 

(3) NormK/Q(x - y() = 1, 

where K = Q(() and where x and y are linear forms in u and v with coefficients 
in the ring of integers of the unique real quadratic subfield L of K. We shall give 
a description of a method to solve such equations effectively. Use is made of the 
divisibility properties of the elements of certain recurrence sequences associated 
with the subfield L. An important feature of this method is the avoidance of a 
construction of a set of fundamental units for K. A few specific cases shall be 
worked out in detail. In two tables the results on a series of selected equations and 
associated fields are listed. A sample of equations, complete solutions of which are 
provided, is given below: 

(U + V)4 12u2V2=1, u4-24uV3-24v4=1, 

u4 6u2V2 -3V4 = 1 u4 U30u2V2 -27V4 = 1. 

2. The Associated Number Fields. In this section we shall describe the 
number field K and its relevant properties, with special emphasis on the unit struc- 
ture of K. 

Throughout the sequel, K shall be a number field of absolute degree 4, with 
a real quadratic subfield L = Q(v/d), where d is squarefree and d -3 (mod 4). 
Moreover, it is assumed that K is not totally real, so that the absolute discriminant 

K of K is negative. 
The unit group of L is denoted by 'L = (?1) x ' Where ?/+=(6): with 

fundamental unit E > 1 of L. Likewise, the unit group of K is denoted by K = 

(?1) x K+, where K+c is a free abelian group of rank two, generated by, say the 
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fundamental units e1 and E2. Now define &KL = {2 E &K I NormK/L(2) = 1, K/L 
2 > 0}, where 9K denotes the ring of integers of K. Obviously, this relative unit 
group /+/L has rank 1. Assume is generated by > 1, so that t4/L = 
Then ( satisfies the equation 

(4) x2 _Ox+ 1 =0, 

where 9 : + (-' E ML, the ring of integers of L. 
Define a, b E Z by 

(5) = a + bvi, 

and let a = a-bld be its L-conjugate. Since ( is real and because K is not totally 
real, we have 

9 _4 < 0 < 02 - 4. 

This immediately implies that 

(6) la - bvl < 2 with a> 1 and b> 1, 

as 9 > 0. Note that the minimal polynomial for ( is the monic reciprocal polynomial 

(7) x4 _X +3tx2_-sx+l, withs=2aandt=a2-db2+2, 

so that Eq. (3) becomes 

(8) x4 -sx3y + tx2y2 _sxy3 + y4 =1. 

Equation (8) represents the type of diophantine equation to be investigated in this 
paper. 

Let t7 E = (c), so that t = (k for some k E Z, and suppose X and Y are 
linear forms in u and v with coefficients in ML. Then 

(9) NormK/Q (X(U, v) + Y(U, v)4) = 1 

is a Thue equation in the rational integer variables u and v. If it is assumed that 

{(, (} is a set of fundamental units for cK-recall that E is a fundamental unit of 
&PL-then (9) may be rewritten as 

(10) X(U, V) + Y(U, V)k =V 

with m, n E Z. We may drop the ? sign in (10) without loss of generality, by 
adjusting the signs of X and Y. Also assume k > 1. As the conjugacy map, 
characterized by ( -l , leaves the elements of L unchanged, the conjugate 
equation to (10) is 

X(U, V) + Y(U, V)-k = mf-n 

so that, 

m n-k - (-n+k n _-n 

(11) -X(u, v)e = - Y(U, V)C m -k ~-k y(k,v)ek 

The elements8n := ((n _-n)/(_ (- 1) of the sequence (8n)neZ are L-integers 
and system (11) reads in terms of the elements of (8n): 

(12) -X(u,v)e-m = Sn-k y(u v)E-m =Sn 



178 R. J. STROEKER 

Obvious solutions are given by n = 0 and n = k, because so = 0, so that X(u, v) = 0 
and Y(u,v) = Em or X(u,v) = Em and Y(u,v) = 0. These solutions shall be 
referred to as the trivial solutions. Clearly, it depends on the divisibility properties 
of the elements of the sequence (sn) whether any nontrivial solutions exist. In the 
special case that 2 exactly divides k(211k), we can give information on the exponent 
to which XY is divisible by the unique prime ideal divisor of 2 in ML, provided 
XY o O. 

A precise formulation is given in the following theorem. 

THEOREM 1. Let ( > 1 be a real root of the equation 

X4- sx3 + tx2 - sx + 1 = 0, 

where s = 2a, t = a2 - db2 + 2, and a, b, and d are any three odd positive integers 
such that 

* d is squarefree and d 3 (mod 4), 
* Ia - bVI < 2. 

Further, K = Q(() and L = Q(f) is the real quadratic subfield of K. 
Suppose that ( generates the relative unit group 4+/L' and let {e, (} be a fun- 

damental set of units for K. 
If NormK/Q (X + yak) = 1, with 211k and X, Y E ML, then either XY = 0, or 

0 :$ XY is exactly divisible by an odd power of the unique prime ideal divisor p of 
2 in 6L. 

Remark 1. Before setting out to properly prove this theorem, the following 
remarks may be helpful to the reader. 

* It is immediately clear that for any squarefree positive d -3 (mod 4) 
there are infinitely many odd a and b with la - bv'hl < 2. Also, for such d 
there is a unique prime ideal divisor p of 2 in ML and p2 = (2). 

* At first glance, the condition concerning the free abelian unit group of K 
being generated by E and ( might appear rather restrictive. However, as it 
turns out, E and ( "nearly always" satisfy this condition. In Section 4 we 
shall describe an algorithm for checking this condition. 

* In the applications (Section 5) the linear forms X and Y are always chosen 
in such a way that the product XY is forced to vanish. This leads to 
equations with trivial solutions only. 

* The method can most likely be extended to include 

NormK/Q(X + yak) = mI 

with m > 1, provided extra information is available on the prime divisors 
of m and the class number of K. 

3. Proof of Theorem 1. This section is devoted to a proof of Theorem 1. 
The conditions placed on a, b and d guarantee the irreducibility of the defining 

equation of ( over Q. This can be seen by applying Eisenstein's criterion with 
prime 2 to the polynomial f(x + 1), where f(x) denotes the defining polynomial 
for (. 

Starting with 
NormK/Q (X + y k) =1 
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with k _ 2 (mod 4) and X, Y E ML, we recall (see (12)) 

(13) -Xe-m = Sn-k y-m - 
Sn 

Sk Sk 

Clearly, the sequence (Sn)nEZ defined by Sn := ((n - $-n)/(_ 8- ) should be 

investigated. We also define the related sequence (tn)nEZ by tn := ,n + .-n. 

LEMMA 1. The sequences (sn) and (tn) are as defined above. 
1. For all nE Z, sn,t, ^EL 
2. Let p be the prime ideal divisor of 2 in 69L; then 

* if n is odd then p t sn and P 1 tn, 
* if n 2 (mod 4) then p 11jsn and Ap3 11 tn 
* if n = 2en' with odd n' and e > 2 then p2e 11 Sn and sp2 11 tn. 

Proof. The following recurrence relations are immediate consequences of the 

definitions of the sequences (sn) and (tn)-recall that 0 = ( + - = a + b/d-: 

(14) so = 0, si = 1, and sn+1 = Osn-sn-1 for n = 1,2,...; 

(15) to = 2,t1 = 0, and tn+1 = 0tn-tn_1 for n = 1, 2,.... 

Now NormL/Q(0) = a2 -db2 = 2 (mod 4) and NormL/Q(02 -2) = (a2+db2-2)2 

- 4da2b2 _ 8 (mod 16). It follows that p 110 and p3 11(02 - 2). 

Since (14) and (15) imply that for n = 2,3,.... 

Sn+2 = (02 - 2)sn - Sn-2 and tn+2 = (02 - 2)tn- tn-2 

the stated divisibility properties of tn by powers of p follow easily. 

If n = 2en' with e > 1 and odd n', because of S2n = Sntn for all n, it is readily 

seen that 
e-1 

Sn = Sn' 171 t2iX 
i=O 

and the remaining divisibility properties of Sn follow immediately. This completes 

the proof of the lemma. 0 

We continue the proof of Theorem 1. 

Returning to (13), because sn-k/Sk, Sn/Sk E (5L and P 11 Sk as k -2 (mod 4), 

we see that n has to be even. 

If 2 1I n, then P 1I sn and hence P t sn/sk. But n-k-0 (mod 4). So if n $ k, 
then n - k = 2en' with e > 2 and odd n'. From Lemma 1 it then follows that 

g 2e 11 sn-k and hence p 2e-1 11 sn-k/Sk. On the other hand, if 4 1 n and n $A 0, 

we put n = 2en, with e > 2 and odd n', and consequently p 2e- 11 Sn/Sk. But 

P t sn-k/Sk as n-k _ 2 (mod 4). Hence, if XY :$ 0, then XY is exactly divisible 

by an odd power of p, and the proof of Theorem 1 is completed. 0 

For applications of Theorem 1 we refer the reader to Section 5. 

4. Generators of the Positive Unit Group. In this section the set {e, (} of 

K-units will be examined in an attempt to find verifiable conditions that need to 

be imposed in order to use these units as fundamental units for K. As usual, e is 

a fundamental unit of L and ( is defined by (6) and (7). 

First assume that ( is a generator of the relative unit group t+/L' i.e., ( is not 

a perfect power of a unit i > 1. Then C may serve as one of the two generators of 
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Z<+ As a second generator we may choose 6, provided F and V/ do not belong 
to K (see [7], [8]). The next theorem asserts that neither E nor eC is a perfect 
square in &K. The following notation will be adopted for the minimal polynomial 
of a unit ?I E (K: 

(16) x4 _s,7x3 +t x2 -u, x+1. 

THEOREM 2. Let a, b and d be odd rational integers restricted by the conditions 
formulated in Theorem 1. Further, let E > 1 be a generator of V+ and let C > 1 
be a generator of 9+/L with minimal polynomial of type (16) and se = uC = 2a, 
t= a2 - db2 + 2. 

Then C and E generate /+. 

Proof. First consider the case of e. Let x2 - 2wx + 1 be the minimal polynomial 
of c. Then the rational integer w is positive and w > 1 as E > 1. Further, 
E = w + v4HwT7. Now let e1 := /e; then X4 - 2wX2 + 1 is the minimal polynomial 
for e1, for el ? ML as E is a fundamental unit of L. Then obviously all field 
conjugates of e1 must be real, and this means that e1 0 K. 

Next it will be shown that /e does not belong to K. As usual, let 9 = 

a+bvd. The field conjugates of eC are eC, es-l, e'-, e-(l where C, C-1, * t-1 
are the field conjugates of C. If 9 denotes C + C-1, then 

s = Oe + #E-l _ 2 (mod 4), 

(17) t 2 = 2 + 2+ =oO (mod 4), 

uC = e + E-1 =-2 (mod 4), 

as is easily checked (see (16)). Now suppose eC is a perfect square in K. Let 
,B := V/. Then, it is not hard to verify that 

q = 82- 2to, 
t = t2 - 2s1u1 + 2, 

u = up- 2ta. 

Clearly, all of so, to and up must be even, as s,, t, and u, are even. But this 
contradicts (17), thus completing the proof of the theorem. 0 

In order to apply the main theorem (Theorem 1), it follows from Theorem 2 
that one only has to make sure that C given by (7) for suitable values of a, b and 
d indeed generates W K/L' This can be achieved by checking that C is not a perfect 
power in AK. The following lemmas provide an algorithmic approach to solve this 
problem. Both lemmas are due to Nakamula-in [81 they are stated without proof 
and [9] only provides a proof for Lemma 2 below. 

The first lemma gives an upper bound for the exponent n in C = ?1n with 
rj E 9K/L 

LEMMA 2 (NAKAMULA). If f = 7n withq E 9+ and n E N, then 

2 log C 

log( ( 3- 7) 

where .? is the absolute discriminant of K. 

Proof. See [9]. 0 
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The next lemma gives an algorithm for checking possible values of n in 7 = 

providing at the same time a minimal polynomial (16) for r1. 

LEMMA 3 (NAKAMULA). Let C E /K/L, 1 > 1, and n EN. Put r : and 
a:= rj + .1- 

Then r, E K n R if and only if there are s, t E Z such that 

(18) is - al < 2, t = 2 + a(s - a) 

and 

sc = fn(a) + fn(s-a), tc = 2 + fn(a) fn(s- a), 
where the polynomials fk E Z[x] are given by the recurrence 

fk(x) = xfkl(x) -fk-2(x) for k E Z, fo(x) = 2, fi(x) = x. 

Moreover, s = ,1 = U,, and t = tr are the coefficients in the minimal polynomial 
(16) of ?I. 

Proof. If i7 E K n R then 7 has a defining polynomial of type (7), because ( has 
a similar defining polynomial and the field conjugates of ' follow immediately from 
those of C. As 

X-4 sx3 +t x2_-s8x+ 1 = (x2-ax + 1)(x2 -X + 1) 

identically, it follows that s. = a + c>, t, = 2 + cxc, where Jal < 2. Consequently, 
(18) is satisfied with s = s,, and t = t,,. 

On putting an + (-1, we see that se = an + an and tC = 2 + an * ?n 
Moreover, an = ?)n + r n= fn(a). From this the stated properties of the polyno- 
mials fk are easily checked. See also (15). 

The converse follows likewise. 0 

COROLLARY. If C E K/L' then ( is never a perfect square. 

This follows immediately from Lemma 3 with n = 2 by using parity considera- 
tions as in Lemma 2. 0 

5. Applications and Examples. Let X = X(u, v) and Y = Y(u, v) be linear 
forms in u and v with coefficients in ML. Consider 

NormK/Q (X + y k) = 1 

with k -2 (mod 4) (see (9)). This equation may be written as 

(19) NornL/Q(X2 + XYOk + y2) = 1 

with =k =k + e-k 

On putting X2 + XyOk + y2 = F + Gvd-, Eq. (19) becomes 

(20) F2 - dG2 = 1, 

which is a quartic Thue equation in u and v, as F and G are binary quadratic forms 
in u and v with rational integer coefficients. 

Application 1. 

* Choose odd positive integers a, b and d such that d is squarefree with d- 3 
(mod 4) and la - bvdl < 2. 
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* Then use Lemmas 2 and 3 to check that ( given by (7) is not a perfect 
power in K. 

* Choose k -2 (mod 4). 
* Next choose linear forms X and Y in 9L [u, v] such that for all rational 

integers u and v, NormL/Q (XY) is exactly divisible by a power of 4, unless 
XY =0. 

Then the diophantine equation (19) can have no other solutions than the trivial 
ones, i.e., the solutions given by XY = 0. 0 

Remark 2. 

* As pe 11 XY is equivalent to 

2e II NormL/Q(XY), 

Application 1 is a direct consequence of Theorems 1 and 2. 
* In order to apply Lemma 2, we need to determine the absolute discriminant 

2 of the associated field K. This can be done using the techniques and 
results of Vaughan's paper (see [18]). 
Alternatively, if ( is given by (7), then the discriminant of ( equals 

1W =26b4d2 (a + 2)2 - db2 (a - 2)2 - db2 
2 2 

and - divides 0((). Standard techniques can now be used to calculate 
I? (e.g., see [4]). 

* Also note that, if a - ' and ( > 1, then a = A+ BVid with 
A:=a2 +db2- 4, B:=2abandK=Q(a). 

Example 1. Let d = 3 and a = b = 1. Then K = Q(a) with a = and 
O = ( + (-' = 1 + 3. Now choose X = u, Y = v and k = 2 in Eq. (19). Then 
(20) becomes 

(U + V)4 -12U2V2 = 1. 

Also, for X = u(2 + v3), Y = v and k = 2, we get from (20) 

(U-V)4 + 24uv3 = 1, 

an equation which can be found in [10]. In both cases, 

NormL/Q(XY) = NormL/Q(uv) = U2v2 

so that the norm condition of Application 1 is satisfied. Table 1 tells us that ( is 
not a perfect power in K. Consequently, both equations have only trivial solutions, 
given by uv = 0. 0 

How can one decide whether a given quartic diophantine equation is suitable for 
application along the lines indicated above? Obviously, the associated field has to 
be of the right type. But there are also other considerations. 

Application 2. Let 

(21) NormK/Q(x + ya) = 1 with x, y E Z 

be a given diophantine equation with associated real quartic field K = Q(a) of 
type (r, s) = (2,1), where r and s are the number of real and complex embeddings 
of K, respectively. Further, let L = Q(Vd) be the real quadratic subfield of K. 

* Check that d -3 (mod 4). 
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* Choose u,v E L such that r1 = va E + and = kwithk2 -K/L 
wt 

(mod 4). 
* Check, by using Lemmas 2 and 3, that C is not a perfect power in K. 

Then Eq. (21) has only trivial solutions if for all x, y E Z for which y' := y/v E ML, 

NormL/Q(XY) is exactly divisible by a power of 4, where X:= x - uy' and Y 

y'. 0 
Remark 3. 

* Searching for 7 and C, let : A + Bvif be an integral generator of K. 
It is not hard to find a suitable r1 E 9+ of the form r1 = a + bfl with 

a, b E L. Indeed, only one solution (a, b) of the L-equation a2 - b2#2 = 1 is 
needed. Then a = a' + b'3, for certain a' and b' of L. Next apply Lemma 3 
to find k. 

* It is clear from the above construction of X and Y that 

4e 11 NormnL/Q(XY) 

places a condition on the integers x and y. This means that the assertion 
may be rephrased by saying that there can be no nontrivial solutions of a 
specific form, given by certain congruences modulo powers of 2. 

Example 2. We try to solve the following equation 

(22) x4- 6x2y2 - 3y4 = 1, 

which may be rewritten as (21) with a = 3 + 2A/: and K = Q(a). We try to 
find an r1 = u + vac E ?/L with u, v E L = Q(V3-). Then 

1 = = (u + va)(u - va) = u _ v2(3 + 23)) 

a solution of which is given by u = 1 + v?, v = 1. Use Lemma 3 to check that 
n=4 ,where 2 =1+ V + V2iF3. Then 

x+ya =x-(l+\13V)y+yC2 =X+yC2 

with X := x - (1 + V/3)y, Y := y. From the original equation it can be seen that 
x has to be odd. Hence p t X, and Y is divisible by an even power of P, unless 
XY =0. 

As a result, no other solutions exist than those given by y = 0, provided C is not 
a perfect power in K. This can be verified by Lemma 3 (see also Table 1). So Eq. 
(22) has solutions (x, y) = (?1, 0) and no others. 0 

More examples are given in Table 2. 

6. Construction of the Tables. Table 1 lists a few number fields, their 
discriminants and the unit structure of 9{+ The discriminants are calculated K/L 
using [18]. To determine the unit structure, use is made of Nakamula's bound (see 
Lemma 2). 

To get a fair impression of the possible equations that can be dealt with, the 
following observations are useful. 

The quadratic form Q := X2 + XyOk + y2 with linear forms X, Y E &L[U, v], 
may be written in terms of u and v as 

Q = uTBu- 
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TABLE 1 

Associated number fields 

Absolute discriminant 0 of K = Q(C) 

e+ e1=a + b-.I, 4/+L 
n 

e 

Bound = 2log C/ log(3 ( / 83-7) 

d (a, b) -2-6d-20(C) -2-6d-20 Bound n 

3 (1,1) 3 3 1.61 1 
3 (3,1) 11 11 1.71 1 
3 (5,3) 36.11 11 2.63 1 
3 (7,3) 37 3 4.83 3 
3 (7,5) 3 . 56 3.52 2.01 1 

3 (9,5) 54 *13 * 23 13 - 23 1.72 1 
3 (11,7) 3.74.112 3.112 1.84 1 
3 (31,19) 3 . 112.194 3 8.05 5 
7 (1,1) 3 3 2.34 1 
7 (3,1) 33 3 3.29 1 
7 (7,3) 36 .19 32 .19 1.74 1 
7 (9,3) 34 * 7 * 29 7 - 29 1.78 1 
7 (13,5) 33 . 56 3 . 52 2.39 1 

7 (15,5) 32 _.54 . 19 32 . 19 2.15 1 
7 (17,7) 32 . 74 .*59 59 2.72 1 
7 (19,7) 33 . 76 3 7.02 3 

11 (3,1) 5.7 5.7 1.53 1 
11 (5,1) 19 19 2.05 1 
11 (9,3) 34 .*52.11 11 3.34 1 
11 (11,3) 36.5.7 32.5.7 1.81 1 

11 (15,5) 54 . 7 .53 7 * 53 2.01 1 
11 (17,5) 56 * 43 52 . 43 1.83 1 
11 (23,7) 76 8 43 72 . 43 1.87 1 

11 (25,7) 52 . 74 .19 52 . 19 2.20 1 
15 (3,1) 5 *7 5 - 7 1.61 1 
15 (5,1) 3 - 17 3 .17 1.70 1 
15 (11,3) 37 *17 3 * 17 2.44 1 
15 (13,3) 36 5-7 5 7 2.70 1 

15 (19,5) 3 - 54 *11 - 43 3 * 11 - 43 2.01 1 
15 (21,5) 54 . 72 .11 72 .11 2.07 1 
15 (27,7) 5* 74 * 11 * 53 11 . 53 2.21 1 
15 (29,7) 3 * 74 - 113 3 * 113 2.38 1 

where 
( ) B :=CTAC, 

v 

and the matrices 

A:=(4 ) and C:=( 13) 

are defined over M1L. Clearly, B is symmetric. If 

B=(P p), 
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TABLE 2 

Solved equations 

NormK/Q(X + yC2) = u4 + a2U2V2 + aluV3 + a4 V41 

X(u, v) = au + fv, Y(u, v) = 6v 

c = cl + a2V1, 3 =,31 + #2V'd, 6 =6 + 62v/ 

All equations have the trivial solutions (u, v) = ?(1, 0); 

the final column lists additional trivial solutions (u, v). 

d (a,b) a I a2 /31 /2 6c5 62 a2 al ao (u,v) 

3 (1,1) 1 0 - 1 0 1 0 -12 24 -12 (1,1) 
3 (1,1) 1 0 -1 -1 1 0 -6 0 -3 
3 (1,1) 1 0 -1 1 1 0 -30 48 69 
3 (1,1) 1 0 -5 -3 2 1 -90 0 -3 
3 (1,1) 1 0 1 -1 2 -1 6 0 -3 
3 (1,1) 1 0 1 0 2 -1 0 24 24 (1, -1) 
3 (1,1) 2 1 0 1 0 1 12 72 36 
3 (1,1) 2 1 -3 -1 0 1 18 0 -27 
3 (1,1) 2 1 1 -1 2 -1 90 0 -3 
3 (3,1) 1 0 -5 -3 1 0 -102 0 -99 
3 (3,1) 1 0 - 1 0 2 -1 0 72 -72 (1,1) 
3 (3,1) 1 0 -1 -1 2 -1 6 0 -99 
3 (3,1) 2 1 2 1 2 -1 180 648 468 (1, -1) 
3 (5,3) 1 0 - 5 - 4 2 -1 - 192 648 -648 
3 (5,3) 1 0 - 5 - 5 2 -1 - 186 0 - 99 
3 (5,3) 2 1 -2 -3 2 -1 -12 72 -108 
3 (5,3) 2 1 -5 -5 2 -1 -6 0 -99 
3 (5,3) 2 1 1 - 1 2 -1 -30 144 - 27 
7 (1,1) 1 0 -3 -1 1 0 -30 0 -27 
7 (1,1) 1 0 - 3 0 1 0 -44 168 -188 (1,1) 
7 (1,1) 1 0 -3 1 8 -3 222 0 -27 
7 (3,1) 1 0 -7 -3 0 - 1 -222 0 -27 

11 (3,1) 1 0 -9 -3 1 0 -358 0 -35 
11 (3,1) 10 3 0 1 0 1 396 2904 484 
11 (3,1) 10 3 - 33 - 9 0 1 418 0 -4235 
11 (3,1) 10 3 - 66 - 19 0 1 396 -2904 484 
15 (3,1) 1 0 - 11 - 3 1 0 - 510 0 - 315 
15 (3,1) 4 1 4 1 1 0 0 360 360 
15 (3,1) 4 1 -26 -7 1 0 0 -360 360 
15 (3,1) 4 1 -11 -3 1 0 30 0 -315 

then 

p = a 
2 

+ a-fOk + -t 
2 

2 
of a: + 'y+ 2Ok(a6 +Ipy), 

r= /2 +,360k + 62. 

Further, NormL/Q(QQ) (see (19)) may be written as 

(23) a4u4 + a3u3v + a2u2v2 + aluv + aov =4 1 
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with 
a4 = pp, 

a3 = 2(pa + 
a2 = 4aa + pjr + pr, 

a, =2(a r) 

aO = rr. 

Equation (23) must have a trivial solution, for which (u, v) = (1, 0) is selected. This 
choice corresponds to 

X = au +/3v = a, Y =-u + 6v = a, 

so that p is a unit of ML, that is to say, pp = a4 = 1. By means of a unimodular 
transformation of the form 

0O 1) 

the coefficient a3 can be made to vanish, which implies that ap-1 E Z[Vs]. Further, 
for reasons of simplicity, choose -y = 0. Moreover, 6 will be chosen such that go t 6, 
so that Y is never exactly divisible by an odd power of g. All this means that 

* a is aunit, as p= a2 iS aunit. 
*: f=-Ok6 +aOrP1 =2Ok6 +an with n E Z. 
* a=0. 

* p 1' . 
Table 2 gives a selection of equations resulting from linear forms X and Y chosen 
accordingly. Moreover, without exception, we have chosen k = 2 for these equations. 

Note that it remains to be checked that X = au + ,3v and Y = 6v satisfy the 
norm requirement: if XY ? 0 then NormL/Q(XY) is exactly divisible by a power 
of 4. In most cases this is just a matter of checking the parity of u and v by means 
of a suitable congruence modulo 8. 
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